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Abstract:  The IAAO has adopted assessment uniformity standards as measured by the COD and 
many states and provinces have developed similar standards.  However, the IAAO Standard on 
Ratio Studies (1999) states that Ajurisdictions should not be mandated to reappraise unless the ratio 
study indicates failure to meet the standards presented in this section with an appropriate degree of 
statistical confidence@ (page 36).  This statement implies that one must calculate confidence intervals 
about the calculated COD or conduct related tests to determine whether required standard have been 
met.  Unfortunately, unlike measures of assessment level (median, mean, weighted mean), there are 
no published formulas for calculating confidence intervals for the COD and the only method cited in 
the appraisal literature for doing so is the complex, computer-intensive Abootstrap@ method.  This 
paper evaluates the dilemma and proposes a simple, realistic test for determining whether COD 
standards have been achieved. 
 
 
Background 
 
There are three primary aspects of valuation performance: overall level, equity between property 
groups, and equity within property groups.  The assessment industry has developed standards in all 
three areas and assessment agencies naturally desire to quantify performance in each area as 
accurately as possible.  To this end, confidence intervals are used to measure the precision of 
computed assessment levels as measured by the median, mean, and weighted mean to determine 
whether one can assume with reasonable confidence that required measures have not met.  Similarly, 
statistical tests can readily be applied to determine whether assessment levels for two or more 
property groups are reasonably similar. 
 
The primary gauge of equity among individual properties within a property use class, neighborhood, 
or other group is the coefficient of dispersion (COD), which measures the average percentage 
deviation about the median ratio.  IAAO and many state/provincial agencies have adopted standards 
for the COD and reappraisal contracts often call for the contractor to attain specified CODs.  Of 
course, a computed COD, just like a computed measure of the assessment level, is only an indicator 
of true performance.  The accuracy of the measure depends on sample size and distribution.  Clearly, 
there is a need to determine with reasonable confidence whether assessment uniformity standards 
have been achieved.  In fact, the 1999 IAAO Standard on Ratio Studies (page 36) states that 
jurisdictions Ashould not be required to reappraise unless the ratio study indicates failure to meet the 
standards presented in this section with an appropriate degree of statistical confidence@.  This 
language, not present in previous versions of the standard, makes it virtually imperative for oversight 
agencies to quantify whether required uniformity measures have been met. 



Current Methodology and Limitations 
 
If ratio data could be assumed to be normally distributed, a confidence interval for the standard 
deviation and hence the COD could be constructed.  It is well known that in a normal distribution, a 
confidence interval for the population variance (σ2) is given by the formula, 
 

(n-1)s2 / χ2
L # σ2 # (n-1)s2 / χ2

U 
 
where n = sample size, s2 is the sample variance, and χ2

L and χ2
U are the appropriate lower and upper 

critical values, respectively, of a chi-square distribution with n-1 degrees of freedom.  One could 
then take the square root of the lower and upper confidence limits to extract the standard deviation, 
divide by the mean to obtain the coefficient of variation (COV), and multiply by .80 to obtain the 
corresponding confidence limits for the COD, since in a normal distribution the COD is 
approximately 80% of the COV1.  Unfortunately, ratio data does not always approximate a normal 
distribution. 
 
An alternative, nonparametric approach is to use a repeat sampling or Abootstrap@ methodology.  In 
this case, one draws a large number of samples with replacement of size n from the sample, 
calculates the COD for each draw, and determines the cut points (confidence limits) that correspond 
to the desired confidence level.  For example, if a 95% confidence interval is desired, one could 
draw 1,000 samples (with replacement).  The lower confidence limit would fall between the 25th and 
26th smallest CODs and the upper limit would lie between the 975th and 976th largest CODs. 
Unfortunately, bootstrap confidence intervals are not part of software packages generally found in an 
assessor=s office and require special (complex) programming2.  
 
The biggest problems with confidence intervals for the COD, however, go beyond the above 
limitations.  As is well known, the precision of any statistic is a function of (1) sample size and (2) 
the distribution or dispersion of the data.  As the dispersion of the data increases, confidence 
intervals widen.  This is particularly problematic with measures of dispersion or uniformity, because 
dispersion is precisely what is being measured.  Regardless of whether one assumes normality and 
uses the parametric approach or uses a bootstrap method, the resulting confidence limits for the 
COD will increase with the COD itself. The worse the COD, the wider the confidence interval.  For 
example, given a certain sample size, a COD of 20 will have a much wider confidence interval (say 
10 to 30) than a COD of 10 (say 5 to 15).  Thus, poor dispersion masks or condones poor 
dispersion3. 
 

                                                           
1   The author verified this by computing the COD and COV from a sample of 1,000,000 

random draws from a normal distribution with mean of 1 and a standard deviation of 1.  
The COD and COV were 80.01 and 100.20, respectively. 

2   The Kansas Department of Revenue has developed one such program. 

3   Of course, poor dispersion also confounds the ability to reject poor assessment levels (a 
problem addressed further later in the paper). 



Table 1 presents a hypothetical example of 30 residential ratios from a municipality that has not 
revalued in some time.  The ratios range from 0.506 to 1.338, the median is .804, and the COD has 
deteriorated to 18.38.  Can we conclude with 95% confidence that the true COD (for the population 
of residential values) is below 15?   
 
Assuming normality4, the 95% confidence limits for the population variance is calculated as: 
 

(30-1)*.0382 /45.72 # σ2 # (30-1)*.0382 /16.05 
 

 .0242 # σ2 # .0690 
 
where 45.72 and 16.05 are the critical chi-square values at the 95% confidence level for a sample of 
size 30 (and thus 29 degrees of freedom).  The corresponding confidence limits for the population 
standard deviation (σ) and COD are then derived as follows: 
 

Lower Limits     Upper Limits 
 

 σ = sqrt(.0242) = .1556   σ = sqrt(.0690) = .2627 
 

COV = 100 x .1556/.8533 = 18.23  COV = .2627/.8533= 30.78 
 

COD = 18.23 x .80  = 14.58   COD = 30.78 x .80  = 24.63 
 
Notice that the confidence limits are not symmetric about the sample COD (18.38).  This is typical 
and occurs because the upper end is skewed by ratios more distant from the center of the distribution 
(regardless of the distribution of the data). 
 
Since the lower confidence limit for the COD is below 15, the null hypothesis that the true COD is 
15 or less cannot be rejected with 95% confidence, despite the fact that the sample COD is 18.38 
based on 30 sales.  Similarly, a bootstrap algorithm (which does not require normality) run with 
5,000 iterations also yielded a lower confidence limit of less than 15.0. 
 
A better measurement tool is needed if IAAO standards for the COD are to have credibility and if 
tests of uniformity are to be commonly and easily conducted. 
 
 
Suggested Approach 
 
Rather than attempting to compute confidence intervals for the COD, consider an approach in which 
one tests the null hypothesis that the COD is not more than the value set in standards (which may be 
based on state/provincial requirements, professional guidelines, or in-house policy): 
 

                                                           
4 Despite the ratios being skewed to the right, neither the powerful Kolmogorov-Smirnov 

or Shapiro-Wilk test were able to reject normality at the 90% confidence level. 



Ho: COD # CODSTD 
 
where CODSTD is the Astandard@ (required or target) COD.  What is the maximum value of the 
calculated COD that can be accepted before Ho is rejected at the desired confidence level?  This 
restates the problem in the form of a test and makes clear that what is really desired is to determine 
whether uniformity can be deemed worse than set forth in standards (thus a one-tailed test is 
appropriate).  To make a straightforward mathematical solution possible, assume finally that the 
standard against which the calculated COD will be compared is a normal distribution with a COD 
equal to the standard COD.  This does not imply that actual ratios must be normal; but only that the 
distribution (whatever it is) can not have a COD that significantly exceeds that of the benchmark 
distribution.  Thus, the benchmark distribution is a normal distribution, where low and high ratios 
are approximately evenly balanced, with variance defined by the required or target COD.  The fact 
that actual ratios may vary from a normal distribution will not result in rejection of Ho, but a 
significantly higher COD will. 
 
Given this framework, the following test statistic is appropriate: 
 

(n-1) * COD2 
χ2 =  ------------------- 

CODSTD2 
 
where CODSTD is again the required or target COD5.  If the calculated chi-square value is less than 
or equal to the critical value (with n-1 degrees of freedom) at the specified confidence level, Ho (that 
uniformity complies with standards) is accepted; otherwise it is rejected.  
 
To illustrate, consider the case of the hypothetical sample of 30 ratios in table 1.  Assuming a 95% 
confidence level, the COD test is applied as follows: 
 

29 * 18.3832 
      χ2 =  -------------------  =  43.56 . 

152 
 
The calculated chi-square value exceeds the critical one-tailed value of 42.56 and therefore Ho is 
rejected6. 
 
 
 

                                                           
5 Although chi-square tests traditionally compare standard deviations or variances, 

substituting the COD allows the actual COD to be used in testing.  Further, as explained, 
in a normal distribution the COD is .80 times the COV (standard deviation divided by 
mean).  

6 The one-tailed t-value is appropriate because, as stated in Ho, we are specifically 
interested in whether the actual COD complies with the required COD. 



Acceptable Limits for the COD 
 
Acceptable upper limits for a calculated COD reflect three factors: (1) sample size, (2) the required 
or target COD, and (3) the specified confidence level.  The above formula can be reworked to solve 
for the maximum acceptable COD based on the other three factors: 
 

MAXCOD = CODSTD * sqrt[χ2 / (n-1)] 
 
where MAXCOD is the maximum COD that can be accepted for the sample without concluding that 
the COD standard has not been met and χ2 is the chi-square value for a one-tailed test with the 
appropriate degrees of freedom (n-1).  For exposition purposes, we can rewrite the formula as 
follows: 
 

MAXCOD = CODSTD * TF 
 
where TF equals a Atolerance factor@, computed as sqrt[χ2 / (n-1)].  The minimum value of TF, which 
would apply in the case of a sample of infinite size, is 1.00.  The smaller the sample and the more 
demanding the confidence level for rejection of Ho, the higher TF is.  For example, in a sample of 
only 10 sales and 95% confidence, TF = 2.11.  For the previous example of 30 sales, 
 

TF = sqrt(42.56 / 29) = 1.21 
 

MAXCOD = 15 * 1.211 = 18.17 
 

Since the actual COD (18.38) exceeds MAXCOD, the null hypothesis that the true COD is 15.0 or 
better can be rejected. 
 
Table 2 contains values of TF and corresponding maximum allowable CODs for various sample 
sizes at the 95% confidence level based on COD standards of 10, 15, and 20.  Notice that as sample 
sizes increase, TF factors move closer to 1.00 and maximum allowable CODs converge toward  
standards.  Figure 1 graphs the relationship between TF and sample size. 
 
 
Case Study: New York Towns   
 
The COD test described above was applied to residential properties in 215 towns in the Northern 
region of New York State using sales from April, 1997 to March, 1999 (another 30 towns had fewer 
than 5 valid sales over the two year period and were excluded).  Ratios that lay more than 1.5 
interquartile ranges above the 75th percentile or below the 25th percentile (3.6% of cases in all) were 
removed as Aoutliers@. After trimming, CODs ranged from 3.8 to 59.3, with an average of 13.8.  
Figure 2 shows a histogram of the CODs.  Sixty-four towns had CODs above 15.0, of which 26 
exceeded 20.0. 
 
The null hypothesis that the COD was 20.0 or better could be rejected at the 95% confidence level in 
10 of the 26 towns in which the COD exceeded 20.0.  Figure 3 shows a plot of CODs by sample size 
for towns with approximately 100 sales or less, with markers indicating which CODs could be 



rejected.  The three towns with CODs of near 30 for which Ho could not be rejected all had only five 
sales. 
 
Finally, the tests were rerun to determine how many of the 215 towns had CODs that exceeded a 
standard of 15.0.  Thirty-four (15.8% of all 215 towns and 53.1% of those with CODs greater than 
15) had CODs that could be rejected at the 95% confidence level. Figure 4 shows a plot of the 
results for towns with fewer than 200 sales. 
 
 
Extensions to the Level of Assessment 

 
The same problem in variability in ratios that makes it difficult to determine whether COD standards 
have been met also plagues the ability to determine whether assessment level standards have been 
achieved: the more variability in the ratios, the more tolerance confidence limits provide.  A possible 
solution to this problem is to base accepted tolerance on the variability inherent in acceptable 
dispersion rather than observed dispersion.  When the actual COD exceeds the required or target 
COD, tolerance limits could be based acceptable rather than actual dispersion.  This would prevent 
poor dispersion from justifying poor assessment levels and would provide more equal tolerance 
standards to jurisdictions with good and poor performance. 



Table 1 
30 Ratios 

 
Ratio  Ratio        Ratio Statistics 

 
0.530  0.814  Sales          30 
0.577  0.828  Median   .80400 
0.614  0.846  Mean    .85327  
0.655  0.863  Std Dev   .19545 
0.688  0.889  Variance   .03820 
0.701  0.915  COV      22.91 
0.717  0.939  Minimum   .53000 
0.730  0.953  Maximum   1.3830 
0.744  0.977  25th Percentile   .72675 
0.746  1.028  75th Percentile   .95900 
0.755  1.069  COD      18.38 
0.769  1.115 
0.775  1.200 
0.787  1.242 
0.794  1.338 



Table 2 
Tolerance Factors and Maximum Acceptable CODs 

 
                                           COD Standard 

--------------------------------------------------- 
 

           N        TF        10.00       15.00       20.00 
 
           5      1.540       15.40       23.10       30.80 
           6      1.488       14.88       22.32       29.76 
           7      1.449       14.49       21.73       28.97 
           8      1.418       14.18       21.26       28.35 
           9      1.392       13.92       20.88       27.85 
          10      1.371       13.71       20.57       27.42 
          11      1.353       13.53       20.30       27.06 
          12      1.337       13.37       20.06       26.75 
          13      1.324       13.24       19.86       26.47 
          14      1.312       13.12       19.67       26.23 
          15      1.301       13.01       19.51       26.01 
          16      1.291       12.91       19.36       25.82 
          17      1.282       12.82       19.23       25.64 
          18      1.274       12.74       19.11       25.48 
          19      1.266       12.66       19.00       25.33 
          20      1.260       12.60       18.89       25.19 
          21      1.253       12.53       18.80       25.06 
          22      1.247       12.47       18.71       24.95 
          23      1.242       12.42       18.63       24.84 
          24      1.237       12.37       18.55       24.73 
          25      1.232       12.32       18.48       24.64 
          26      1.227       12.27       18.41       24.54 
          27      1.223       12.23       18.34       24.46 
          28      1.219       12.19       18.28       24.38 
          29      1.215       12.15       18.23       24.30 
          30      1.211       12.11       18.17       24.23 
          35      1.196       11.96       17.93       23.91 
          40      1.183       11.83       17.74       23.66 
          45      1.172       11.72       17.59       23.45 
          50      1.164       11.64       17.45       23.27 
          60      1.149       11.49       17.24       22.99 
          70      1.138       11.38       17.07       22.76 
          80      1.129       11.29       16.94       22.59 
          90      1.122       11.22       16.83       22.44 
         100      1.116       11.16       16.73       22.31 
         200      1.082       10.82       16.23       21.64 
         300      1.067       10.67       16.00       21.34 
         400      1.058       10.58       15.87       21.16 
         500      1.052       10.52       15.78       21.04 
 



 

Figure 1

Graph of TF with N
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CODs of 215 NY Towns
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Figure 3

Compliance with Standard of 20
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Figure 4

Compliance with Standard of 15
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